Effect of vaginal distention on elastic fiber synthesis and matrix degradation in the vaginal wall: potential role in the pathogenesis of pelvic organ prolapse.
نویسندگان
چکیده
Matrix metalloprotease (MMP) activity is increased in the postpartum vagina of wild-type (WT) animals. This degradative activity is also accompanied by a burst in elastic fiber synthesis and assembly. The mechanisms that precipitate these changes are unclear. The goals of this study were to determine how vaginal distention (such as in parturition) affects elastic fiber homeostasis in the vaginal wall and the potential significance of these changes in the pathogenesis of pelvic organ prolapse. Vaginal distention with a balloon simulating parturition resulted in increased MMP-2 and MMP-9 activity in the vaginal wall of nonpregnant and pregnant animals. This was accompanied by visible fragmented and disrupted elastic fibers in the vaginal wall. In nonpregnant animals, the abundant amounts of tropoelastin and fibulin-5 in the vagina were not increased further by distention. In contrast, in pregnant animals, the suppressed levels of both proteins were increased 3-fold after vaginal distention. Distention performed in fibulin-5-deficient (Fbln5(-/-)) mice with defective elastic fiber synthesis and assembly induced accelerated pelvic organ prolapse, which never recovered. We conclude that, in pregnant mice, vaginal distention results in increased protease activity in the vaginal wall but also increased synthesis of proteins important for elastic fiber assembly. Distention may thereby contribute to the burst of elastic fiber synthesis in the postpartum vagina. The finding that distention results in accelerated pelvic organ prolapse in Fbln5(-/-) animals, but not in WT, indicates that elastic fiber synthesis is crucial for recovery of the vaginal wall from distention-induced increases in vaginal protease activity.
منابع مشابه
Extracellular matrix proteases contribute to progression of pelvic organ prolapse in mice and humans.
Pelvic organ prolapse (POP) is a common condition affecting almost half of women over the age of 50. The molecular and cellular mechanisms underlying this condition, however, remain poorly understood. Here we have reported that fibulin-5, an integrin-binding matricellular protein that is essential for elastic fiber assembly, regulated the activity of MMP-9 to maintain integrity of the vaginal w...
متن کاملOvine multiparity is associated with diminished vaginal muscularis, increased elastic fibres and vaginal wall weakness: implication for pelvic organ prolapse
Pelvic Organ Prolapse (POP) is a major clinical burden affecting 25% of women, with vaginal delivery a major contributing factor. We hypothesised that increasing parity weakens the vagina by altering the extracellular matrix proteins and smooth muscle thereby leading to POP vulnerability. We used a modified POP-quantification (POP-Q) system and a novel pressure sensor to measure vaginal wall we...
متن کاملPregnancy with and without birth trauma modulates the gene expression of proteins involved in elastic fiber homeostasis in the rat vagina
Objectives: Elastic fibers have been linked to the pathogenesis of pelvic organ prolapse. This study used a rat model to examine the effect of mode of delivery on the gene expression of proteins involved in elastic fiber homeostasis. Methods: 38 Sprague-Dawley rats were separated as follows: virgin rats after simulated vaginal delivery, groups A (n = 5) and B (n = 5); pregnant rats after sponta...
متن کاملTransvaginal Sacrospinous Ligament Fixation for Pelvic Organ Prolapse Stage III and Stage IV Uterovaginal and Vault Prolapse
The result of transvaginal sacrospinous ligament fixation technique, as part of the vaginal repair procedure for massive uterovaginal (Pelvic Organ Prolapse stage III and stage IV and vault prolapse) is evaluated. A total of 32 women were included in the present case series. Marked uterovaginal prolapse was present in 28 women and four had vault prolapse following hysterectomy. Patients with va...
متن کاملBiomechanical properties and associated collagen composition in vaginal tissue of women with pelvic organ prolapse.
PURPOSE The pelvic tissue of women with pelvic organ prolapse is stiffer than that of controls but there are scant data on the collagen composition that corresponds to these mechanical properties. We evaluated human vaginal wall stiffness using the novel scanning haptic microscope and correlated these measurements to collagen expression in women with and without pelvic organ prolapse. In this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 295 4 شماره
صفحات -
تاریخ انتشار 2008